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Abstract-The current density distribution inside of a metal plate is found for a Gaussian distribution of 
current density flowing normally into one surface. With a simple approximation to the resulting internal 
current, the heat equation is solved for the temperature increase due to Joule heating in the plate. A relation 
for the temperature increase due to a Gaussian distribution of surface heat flux is also derived. Since 
experimental evidence suggests that the Gaussian distribution is a good approximation for the normal 
component of current density from an arc discharge onto a plate as anode, the results are applied to the 
argon arc onto a titanium plate. Evaluation of the parameters for the argon arc using the theoretical model 
of Schoeck and of Eberhart and Seban and calculations from the solution indicate that Joule heating in a 

plate from an arc discharge is negligible in comparison with surface heating from the arc discharge. 
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NOMENCLATURE 

azimuthal component of magnetic 
induction; 
specific heat of the plate material; 
plate thickness; 
exponential integral, see [l]; 
maximum total arc current; 
current density vector; 
current density on plate at center of 
arc; 
r and z components of current density; 
thermal conductivity of plate 
material; 
thermal conductivity of gas; 
Bessel transform variable; 
Boltzmann’s constant; 
maximum heat flux through plate 
surface; 
thermal flux vector: 

dimensionless heat flux through the 
plate surface; 
radius of Gaussian distribution, 
exp ( - r*2ho*2) ; 
Laplace transform variable; 
time variation of current density; 
time [s]; 
initial plate temperature: 
reference temperature for Joule 
heating (Qd *)‘/k*o* ; 
reference temperature for surface 
heating, Qfd*/k*; 

dimensionless temperature increment 
from surface heating, (T* - T:)/Tf; 

dimensionless temperature increment 
from Joule heating, (T* - T:)/T; ; 
dimensionless radius of Gaussian 
distribution, r-,*/d* ; 
co-ordinate normal to plate surface; 
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B? = h-*/K;; 

II 
/I = (ps + IPy; 

81, 62, constants chosen for approximation 
of j, and j, respectively; 

K*, thermal diffusivity, k*/p*c* : 
K” rnt magnetic diffusivity, l//i*a*: 
P, magnetic permeability of plate 

material: 
* Pt density of plate material; 

PO, density of gas in arc: 
work function of the plate material: 

;I”;@), = E1(1/3 - 52); 
$2(z), = (2+/3Nl - 2’). 

Superscript and subscripts 
* 

6, 
F, 

denotes dimensional quantities: 
denotes order v Bessel transform of F; 
denotes Laplace transform of F. 

1. INTRODUCTION 

LABORATORY measurements of input current 
density (see for example Eberhart and Seban 
[3]) suggest that the normal component of 
current density into a plate anode may be 
described fairly closely by a Gaussian distribu- 
tion. In this work, the current density inside an 
infinite plate resulting from such a normal 
surface distribution of current density is 
obtained. With this current as the internal heat 
source inside the plate, the heat equation for the 
rise in temperature in the plate is solved. A 
formula is also derived for the temperature 
increase in the plate from a Gaussian distribution 
of normal heat flux onto one surface when the 
opposite surface is insulated. These solutions 
make it possible to describe the temperature 
distribution in a plate used as an anode for a 
laboratory high pressure argon arc by following 
the theoretical model of Schoeck [5] or Eberhart 
and Seban [3]. 

2. STATEMENT OF THE PROBLEM 

A flat plate of uniform mass density p*, 
thermal conductivity k*, specific heat c*, and 
initial temperature TT is oriented perpendicu- 

larly to the center line ofa free. axially symmetric 
electric discharge.-1 The plate is bounded by 
planes at z* = 0 and :* = d* {the latter being 
the :trc -plate interface) ii1 ;i cylindrical to- 
ordinate system whose positive z*-axis coincides 
with the center line of the arc. The thermal and 
electrical conductivities of the plate material. 
k* and u*, respectively. are constant and in- 
dependent of temperature. Beginning at t* r-2 0, 
the arc discharge gives rise to a current density 
j T and a thermal flux --(2: at the arc-.plate 
interface z* = d*. The opposite side of the 
plate. z* = 0, is thermally insulated. 

Laboratory measurements of input current 
density (see e.g. Eberhart and Seban 131) 
suggest that the normal component ofj ,* on the 
surface of a plate electrode may be adequately 
described by a Gaussian distribution of width 
rg, or by a superposition of Gaussian functions 
of different widths. Let 12 denote the maximum 
total arc current. The energy flux into the plate 
is the sum of contributions qT from several 
different heating processes. The current density 
and thermal flux at z* = cl* may then be 
conveniently represented as 

and 

where Qj* is the maximum value of the thermal 
flux due to the jth process, i is the unit vector 
normal to the plate, and yj is nondimensional. 
The temporal modulation of the input current 
is given by the function S, which is positive 
(negatives when the plate is an anode {cathode). 

Since the thermal rather than the electrical 
response is of primary interest, it is appropriate 
to nondimensionali~ the independent variables 
by measuring distance in units of d*, time in 
units of d*‘/rc”. where K* = k*lp*c* is the 
thermal diffusivity, and current density in units 
of j,* = igpu-~ . *2 For a study of Joule heating in 

f Dimensional and nondimensional variables are written 
with and without asterisks, respectively. 
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the plate, it is convenient to measure temperature 
in units of Tg = (j$d*)2/k*o*, and electric and 
magnetic induction fields in units of ji/o* and 

pj3*, respectively, where p* is the magnetic 
permeability of the plate material. 

In a free, high-current discharge several 
complex mechanisms are involved in the transfer 
of heat energy from the arc to the plate. Detailed 
discussions of electrode phenomena are found in 
[2-51, but only a brief description will be 
included here. The magnitude of net thermal 
flux 4: associated with arc current flow onto a 
plate anode may be expressed as 

4: = 4: + 4: + 4; + 4: + 4: - 4: (1) 

where qk and qz are the radiative fluxes from 
the plate and arc, respectively. The quantity qz 

is the rate of energy transfer to a unit area of the 
plate due to electron conduction and is given by 

q,* = 5j*k,T,*/2e 

where Tf is the electron temperature and kb is 
Boltzmann’s constant. The quantity j* is the 
normal component of surface current density 
and e is the electron charge. The energy flux q: 

in equation (1) represents the heating increment 
associated with the electron passing through the 
anode drop V,, or 

q,* = j*V,. 

Energy is also absorbed at the plate surface by 
the neutralization of the electrons as they enter 
the metal lattice, or 

4$ =j*4 

where C$ is the work function of the metal. 
Inside the arc the gas is highly conducting 

and a jet stream is produced by Lorentz forces 
directed toward the anode plate. Near the plate 
in the vicinity of the arc centerline the flow is 
similar to stagnation point flow, and according 
to Schoeck [S], the convection 
described by 

q: = h*(T,* - T;) 

where T,* is the arc temperature at 

heating is 

the edge of 

the boundary layer and T$ is the wall tempera- 
ture. From Sibulkin [S] the stagnation point 
heat transfer coefficient h* is related to the 
Nusselt number NU by 

Nu = h*r*/k,* = 0.763 ~*PI.“~ (fi/v)+ 

where k,* is the thermal conductivity of the gas, 
Pr the Prandtl number, fl the velocity gradient, 
and v the kinematic viscosity. The gas para- 
meters are evaluated at the film temperature 
which is half way between the wall and jet 
temperature at the edge of the boundary layer. 
Since the jet is produced almost exclusively by 
Lorentz forces, its characteristic speed as found 
by Maecker [9] is 

U (I = (p*/p,)+j*r$ 

where rz is the radius associated with the 
Gaussian distribution of the normal current 
density and p. is the gas density. If Ii,/2rz is 
substituted for the velocity gradient and h* is 
evaluated, then the convective heat transfer to 
the plate is 

q: = kz(0.763) Pr0’4 (p*/4v2po)fj**. 

If we assume that j* varies spatially as the 
normal surface current density the variation of 
q* for the Gaussian distribution 

j* = jg exp (- r*‘/rz2) 

takes the form 

q: = Qr exp (-r*2/2r$‘). 

The radius corresponding to the l/e value of 
the convective heat minimum is 1.414 times the 
radius of the current density distribution, a not 
unrealistic assumption (cf Schoeck [5]). 

We find it convenient to measure the tempera- 
ture increase due to the jth heat flux term in 
units of TT = QTd*/K*. When melting or 
evaporation of the plate material can be 
neglected, the total temperature change in the 
plate can be written as 

T* - Tr = c TTUj + T,*V (2) 
j 
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where Uj and Vare the solutions of the external 
surface heat flux and internal Joule heat source 
problems, respectively. The complete boundary 
value problems for U and Vare as follows: 

a2ujfa? + acjlrar + a2ujjaz2 - dujpt 

=o,o<r<x,o<z< 1 (3) 

dr;jr, 1, t)/a2 = 4,j(r, t), aU,(r, 0, t)iaz 

= Uj(Y, z, 0) = 0 (4) 

for the contributions from surface heating and 

a2Viar2 + aV/rdr + aV/az2 - aviat = -j.j, 

O<r< lcc,O<z< 1 (5) 

av(r, 0, t)/az = aI/(r, 1, t)/az 

= V(r, z, 0) = 0 (6) 

for internal Joule heating in the plate. 

3. SOLUTION OF THE SURFACE HEATING 
PROBLEM 

To solve the differential equation (3) we apply 
the Laplace transform in time and Bessel 
transform of zero order in the radial variable Y 
to obtain an ordinary differential equation in z. 

The Laplace transform off(r, z, t) is denoted by 
f(r, z, s) while the Bessel transform of order I? is 

written asTV(kr z, t); i.e. 

.?,(k, Z, s) z [ dr exp (- st) i dr rJ,(kr).f(r, z, t). 

With the introduction of this notation the 
transformed differential equation becomes 

a2iFjiaz2 - (k2 + s) fYj = 0 0) 

and the solution satisfying the appropriate 
transformed boundary conditions is seen to be 

tij = ;,(k, s) cash J(k2 + s)z/J(k2 + s) 

x sinh ,/(k2 + s). 

Performing the inversion with respect to t and 
expressing the inverse Bessel transform as an 

integral yield 

Uj(r, z, t) = i du 3 dkkJ,(kr) exp (- k2t) 
0 0 

x qj(k, t - U) Q,(z/~, exp (- TT’U)) 

where the Theta function follows the definition 
of Abramovitz and Stegun [I] or 

O&/2, exp ( -x224)) 

= I + 2 f (- 1)” exp ( -rc2n2u) cos (nnz). 
n=l 

This result may be expressed in more usable 
form by means of the Macauley-Owen theorem 

relating two functions ,fi and .f2 to their Bessel 
transforms, namely 

‘r dkkflM(k) = r[ dro~of~(roY2(ro) 
0 

With the aid of the integral formula from Watson 

(t-61, P. 395) 

[ dkk exp (- k2u)J,(kr)J,(kr,) 

= exp ( - (r2 + r;?,)/4u)l,(rr,, ‘2u)/2u 

we finally obtain 

lij(r, Z, t) = 

du s s 2~ drOrOqj(rO, t - ~1 

0 0 

x exp [ - (r2 + r$/4u] Z,(rr,,/2u) 

x Oq( z/2, exp u)) 

When qj is given by a step function in time 
and a Gaussian distribution in the radial 
direction exp (- r2/w”), the integration with 
respect to r, can be performed using the integral 
formula in Magnus, Oberhettinger and Soni 
([7], p. 93). The solution of the jth term of the 
internal heating problem takes the form 

cij(r, z, t) = w2 j du exp (- ?/(w2 +- 4~)) 
0 

x 8,(2/2, exp ( - n2z4))/(w2 + 424). (8) 
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4. DERIVATION OF THJZ CURRENT DENSITY 

It is advantageous first to derive the azimuth 
component of the magnetic field, B(r, z, t), 
induced by the current flow in the plate. Then, 
if displacement currents are neglected, the 
current density in the plate can be calculated 
from 

j,= -?!, j, = ; $(rB)* (9) 

Maxwell’s equations and Ohm’s Law lead to an 
equation for B in which the only parameter is 
the ratio fi = K*/K$ where ~2 = l/p*o* is the 
magnetic diffusivity: 

1 a(rB) r Oatz = 0 

- - = S(t)exp(-r2/w2)atz = 1 r dr 
(11) 

and 

B(r, 2, 0) = 0. 

The boundary condition at z = 1 is the non- 
dimensional equivalent of (1). 

To solve (lo), we apply the Laplace trans- 
formation and write 

B(r, z, s) = $ d&J, (kr) j,(k, z, s). (12) 

The double transform B1 will then satisfy the 
same differential equation as (7). To=find the 
equivalent boundary condition for B1 as we 
note that 

exP (- r2/W2) = (W2/2) 1 dkkJ, (kr) 

x exp (- w2k2/4) (13) 

from Watson ([6], p. 393). Substitution of (12) 
and (13) and combining the integrands yield for 
the boundary condition 

&(k, 0, s) = v)w2 exp (- k2w2/4)/2k. 

The solution of (7) which satisfies this boundary 
condition is 

s,(k, Z, s) = s(s)w2/2k) exp f- w2kZ/4) 

x [sinh (yz)/sinh (y)], 

where 

(14) 

y = (/?s + k”)? (13 

The parameter /I is less than lo-’ even for 
most metals, including good electrical con- 
ductors such as copper and aluminium. Through- 
out the sequel, t(J is limited to values sufficiently 
small that only the thermal response for large 
t/j3 is of importance.AWe first find the inverse 
Laplace transform of B(k, z, s) by evaluating the 
residues at 

y2 = /Is + k2 = -n2z2. 

Thus we obtain 

B(r, z, t) = w2 2 (- 1),-l 7~n sin (naz) 7 dk J,(kr) 
1 0 

x exp (- w2k2/4) F,(k, t; j?), 

where 

F,(k, t;B) = *[duS(r - flu) 

x exp [ - (k2 + n2n2)u]. (16) 

When the current modulation S(t) is a slowly 
varying function over time intervals of width /I, 
then 

F&k, t; B) = S(t)(k’ + n2n2)- l + O(b). (17) 

With (17) substituted into the integrand of (16), 
the series can be summed to yield 

m 

Btr, Z, t) 1 s(t): s dk J,(kr) 

0 

x exp (- w2k2/4) 

When this expression is substituted into (6), the 
result is simply the qu~i-stationa~ current 
density. From the physical point of view, small 
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values of fi imply that plate currents can adjust 
to changes in input current much more rapidly 
than the temperature field can accommodate to 
corresponding changes in Joule heating. 

When most of the input current flows through 
an area whose radius is larger than the thickness 
of the plate, i.e. when w is large, a simple 
approximation can be developed for the quadra- 
ture in (11). The source term j .j is then such 
that the thermal probfem stated in (5) has an 
analytic solution. 

5. SOLUTION OF THE JOULE HEATING 
PROBLEM 

For large w, the exponential in the integrand 
of (1 I) fails very rapidly to small values as k 
increases from zero. Since z does not exceed 
unity, the bracketed factor is a relatively slowly 
varying function of k about k = 0, and this 
suggests an expansion in a Maclaurin series: 

sinh (kz)/sinh (k) = z - (k2/6)z(l - z2) 

+ (k4~/12)(7/30 - z2,‘3 + z4/10) 

+ O(k”). (19) 

With P = w2/4, the resulting integrals in (18) 
take a form which can be integrated by using 
equation (2), p. 393 and p. 100 of Watson [6]. 
We obtain 

.I dk J,(kr) exp (- Pk2)k2” 

0 

= y $ [ 1 - exp (- r2/4P)]. (20) 

Using (19) and (20) in (18) leads ultimately to the 
following expansions for the current density 
components: 

j, = - S(t)((w’/Zr)[l - exp (- r2/w2)] 

- (r/n+)(1/3 - z2) exp (- r2/w2) 

+ O(r/w4)~ 

j, = S(t){z exp (- r2/w2)[1 - (2/3w2) 
(21) 

x (1 - z2)(1 - 9/w’) + 0(l/w4)). 

Only the first terms of (21) need be retained 
when w is large compared with unity. When M: 
is not large a useful approximation to the 
current density can be constructed from (21) by 
multiplying the second terms in each component 
by suitably chosen constants 6, and a?. Thus, 
(for t > 0) we write for a step function increase 
in current 

j, = - (w2/2r)[l - exp (-r2/w2)] 

+ a1(r/w2)(1/3 - z2) exp(-r2!w2j 

and 

j, = z exp (-r2/w2)[1 - &,(2/3w2) 

(22) 

x (1 - ?)( t - rZ/w2)]. 

There is no unique procedure for assigning 
values to ai and s2. In the present work, the 
constants are chosen to give good approxima- 
tions to the exact components in the neighbor- 
hood of the axis of symmetry where most of the 
resistive heating occurs. Thus, the parameter si 
is such that the approximate value of,j, from (22) 
is equal to the exact value at r = i and z = 0. 
Similarly, the value of s2 is chosen to be such that 
the approximation to j, is equal to the exact 
value computed from (18) and (19) at r = 0 for 

W-112 

___ E XOC, calculation. 

-- -- FIrst approxlmotVJn 

..~- Second opproxlmatlon 

0 51 

i. _.-_-_. 
0 02 04 06 08 IO 0” 02 0.4 06 08 10 

Axial dlstonce, z'/d' 

FIG. 1. Variation of radial current density with axial distance 
at several radial stations for the case IC’ -= 5. 
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the midpoint z = $. When chosen in this fashion, product j .j from (22). This product is pro- 
the constants depend upon the parameter w. By portional to the rate of ohmic heating and for 
way of example, for the case w = $, the corre- convenience will be denoted by fZ(z, I): 

spondences are achieved with q = 0.370 and 
&z = 0293. 

In Figs. 1 and 2, the first approximation to j, 
H(z,r)=j.j =$[l -2exp(-r2/w2) 

and j, (cr = a2 = 0) and the second approxima- + exp (- 2r2/w2)] + z* exp (- 2r/w2) 
tion from (22) are compared with exact 
calculations from (18) and (9) for the case w = $. - +i exp(-r2/w2) + [+,w’ - 2z2*, 

+ z’*f/w’] exp ( - 2r2/w2)/w2 

w= l/2 

- Exact calculation 

-.-.--- First approximation 

-------Second approximation 
I-0, r 1 

Axial distance , z’/d’ 

FIG. 2. Variation of axial current density with axial distance 
at several radial stations for the case w = ). 

Similar calculations are shown in Fig 3 for 
r = 04 for the case w = 1. More generally, 
Table 1 displays appropriate values of s1 and s2 
corresponding to several different values of w. 

To solve (5) we need to construct the scalar 

Table 1. Values of sl and Ed corresponding to several 
values of plate thickness w 

w &I E z 

0.5 0.370 0.293 
1.0 0.583 0.590 
2.0 0.825 0.838 
3.0 0.910 0.918 
4.0 0.947 0.952 
5.0 0.965 0969 

+ [$4 + 2z2$, - 2z2&w2]r2 

x exp ( - 2r2/w2)/w4 + (z2+$/w2)r4 

exp (- 2r2/w2)/w6 (23) 

I.O- W=l 

-Exact calculation 

‘0 ---.First approximation 

2 0.8 - ----Second 
Q 

approximation 

; O-6 - 
c 
z 

; 0.4- 

0 0.2 04 0.6 0, 8 

04 
F-0 r , 
> 
-: 

0.3 1 

z-7 r=0.4 
.% 
? 

: 02 -L -.-.-.-.-.-.-. 
z 

E 
2 “,I 

0 02 04 0.6 O-8 IO 

Ax ial distance, zfd’ 

FIG. 3. Variation of axial and radial current density com- 
ponents with axial distance at r = 0.4 for the case w = 1. 

!B 
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where we have introduced the functions ?o = s-l j dy&,(~)[cosh 1-1~ cash ,U 
0 

$1(z) = &*(1/3 - z2) (24) 

$2(z) = 2E,(l - z2)/3. (25) 
x (1 - z)//lsinh/L] + SC’. ‘r %%h) 

The term in l/r2 is not in a form convenient for x [cash ,MZ cash /~(l - ;)//L sinh [L] 

applying the Bessel transform. This can be where 
easily overcome by noting that ,H = (s + k2)“. (31) 

(l/r’)[ 1 - exp ( - h2)] = f dy exp ( - r2q). (26) It is convenient first to invert sFO with respect to 

H(z, r) is then expressed & polynomials in r2 
time and then to perform the Bessel inversion 

times negative exponentials in r2 and its Bessel 
of i$,Pt. Thus. 

transform is easily obtained by using the formula 
on p. 393 of Watson [6] which for our purposes 

,?$,I& = i dqti,(q) exp (- k2t) [ 1 + 2 f 
0 1 

is written 
x cos rcz cos nxq exp ( - n2n2t)J 64 

41 

s dr J,(kr) exp ( - Pr2)r2”+ ’ 
The integrals which result from the substitution 
of (30) into (32) have the form of Fourier 

0 coefficients : 

= (- 1)” & [(2P)- ’ exp (- k2/4P)]. (27) a, = 2, j d~[w2$r(~) cos nx~/] ; A0 = 1, i, 
0 

With the substitution of (23) and (26) into (5), = 2 for n > 0, 
application of the double transform to the 
resulting differential equation then yields and similarly, 

a+ 
I 

- _ (s + k2) 3, = _ fjo(z, k)ls 
az2' 

(28) bn = & i dv COS n’d’h:(rl)] 

subject to c 
av,(s, k,O)/dz = apo(s, k, l)/az = 0. (29) ” 

= 2, i dvl cos ~~vP~~~,(~)I 

where 
1 /d 2/d 

d, = A d dq cos nr~C(~~/w~) G(V)] 

fi,(z, k) = (w4/4) [ ! - i i exp ( - k2/4r) 1 

e, = i,, J dv] cos nq yl’. (33) 
0 

x dq/r] + (w2z2/4)exp (- w2k2/8) 

- (w2$,/2) exp (-w2k2/4) + (l/4) 
In terms of these coefficients, (32) takes the form 

1 id 2/d 

x (w’$I - 2z2rl/, + z2$2/w2) exp(-w2k2/8) av,pt = (w2/4)[ 1 - $ J exp (--k2 

+ (l/8)($: + 2z2$, - 2z2$;/w2)(1 - w2k2/8) 
0 0 

x exp (- w2k2/8) + (1/8)z2$i(1 - w2k2/4 
x (t + 1/4q)) dq/tl] + t exp ( ---n2n2t) 

n = (1 

+ w4k4/128) exp (- w2k2/8)/w2. (30) cash rcz{w2en exp (- k2(t + w2/8))/4 

The solution of (28) which satisfies the boundary - (a,/2) exp [ - k2(t + w2/4)] 

conditions in (29) is + (a, - c, + d,) exp (- k2(t + w2/8))/4 
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+ (b” + c, - 24(1 - wT/S) 

x exp(- k2(t + w2/8))/8 + d,(l - w2k2/4 

+ w4k4/128) exp (- k2(t + w2/8))/8}. (34) 

The Bessel inversion can be accomplished by 
using (27) with k and r interchanged. After 
collecting the coefficients of k2 and k4, the 
integrations over k are readily performed; the 
final result for V can be written as a quadrature: 

I/= /du{(w4,2,rc’l -4’7) 

0 0 0 

x exp( -&)A] 
+ f exp ( - n2.n2u) cos nm 

?I=0 

x [w’e, exp ( -2r2/z2)/z2 

- a, exp ( -r2/~1)/z1 + (24 + b, - c, + d,) 

x exp (- 2r2/z2)/2z2 - w2(b, + c.) 

x exp ( - 2r2/r2)( 1 - 2r2/2,)/2$ 

+ w4d, (1 - 4r2/r2 + 2r4/r$ 

x exp ( - 2r2/r2)/2z:] (35) 

where 

‘51 =w2 +4u 

z2 = w2 + 8~. 

The first approximation of V for large w, in 
which terms in the current density to the order 
of l/w2 and higher are neglected, is found from 
equation (35) by setting s1 = e1 = 0 or 

a, = b, = c, = d, = 0. 

The integrals inside the curly brackets in (35) 
can be expressed in terms of exponential integrals 
by introducing a new variable of integration 
defined by 

( = r2/4u(4au + 1) = r2/4u - ar2/(4au + 1). 

(36) 

Evaluating the coefficients e, yields for the first 
approximation for V 

v = [du{G[2Ei(4u(4L:;i w3 

- :i (,,~~~ w2)) - Ei(r’lilu)] 

X exp (- r2/4u) + w2 exp ( - 2r2/z2) 

cc 

x [l/3 + 4 1 cos mz 
II=1 

x exp (- n27c2u)/R2n2]/22 
1 

+ 0( 1/w2) (37) 

where E(x) is the notation for the exponential 
function used by Abramovitz and Stegun [l]. 
When r is set equal to zero, (37) is indeterminate 
but from (35) we see that both integrations of the 
square bracketed terms can be performed in 
closed form. The remaining integrals can be 
expressed in terms of the exponential integrals 
for which rational approximations exist. 

6. RESULTS AND CONCLUSIONS 

The results derived in the preceding sections 
were used to calculate the temporal variation 
of temperature at r = z = 0 due to ohmic 
heating of the plate. This is the point on the 
insulated surface where the temperature rise is 
greatest. In Fig 4 the nondimensional first and 
second approximations of the temperature 
enhancement are shown as a function of time 
for the step function in the current and for several 
values of w. It can be seen from the figure that 
the first approximation to V yields an overesti- 
mate of the Joule heating effect over the time 
interval considered. 

It is possible to compare the temperature 
increase due to Joule heating with that due to 
external thermal energy transferred from the 
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-- First oowoxlmotlon 
\ 0.61 - ” Second approximation ! 
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FIG. 4. First and second approximations to the transient 
temperature at r = z -= 0 due to Joule heating. 

discharge. All the surface sources of heat des- 
cribed in Section 2 except convection and radi- 
ation are approximately proportional to the 
normal component of current density. Thus, the 
dimensionless temperature increase from a 
Gaussian distribution of surface heat influx as 
given in (8) applies with the same values of w 
as in the corresponding ohmic internal heating 
solution (37). Figure 5 shows graphs of the 
dimensionless temperature increase at the hot- 
test point on the insulated surface as functions 
of time for several values of w. Comparison of 
V and U in Figs. 4 and 5 for the same values of w 
shows that U generally exceeds I/ at comparable 
times by a factor between 15 and 3. However, the 
true comparative value of U is obtained by 
considering the ratio of temperature units for 
internal Joule heating and for surface heating, 
i.e. T,*/F. From Section 2, a consideration of 
the surface heating processes associated with 
the flow of electrons gives the nondimensional 
temperature Ts* as 

T,* = Q:d*/k* - jX(5kbT/2e + C#I + V,) 

x (d*lk*). 08) 

A measure of the relative magnitude of Joule 
heating as compared with heating due to the 
electron flux at the surface is then given by 

FIG. 5. Transient temperature rise at I ; 0 due to 
external energy flux from arc discharge. 

TZ j,*d*jo* -= 
T,* 5k,c*/2e + 4 + V,’ 

(39) 

The assignment of accurate parameter values 
in (39) is not a straightforward task. The proper- 
ties of argon arcs have been determined more 
precisely than those of arcs in other gases, such 
as nitrogen or air, and for that reason we shall 
use parameter values appropriate to moderately 
intense argon arcs in a numerical example. Thus, 
the electron temperature T,* will be taken as 
80 per cent of the gas temperature, the latter 
being in the neighbourhood of 12000°K (cf. 
Schoeck [5]) for moderately intense currents. 
The work function 4 and the electrical resistivity 
l/o* of the plate depend, of course, on the metal 
of which it is composed. We use here the values 
4 = 4V and l/o* = 1.6 x 10m4 ohm-cm appro- 
priate to titanium. (This choice was motivated 
by an interest in electrode effects associated with 
lightning strikes to aircraft with titanium skin.) 
Then, with an anode drop of the order of 1-2 V 
(Eberhart and Seban [3]), the denominator of 
(39) is of the order of 7 V. According to the 
laboratory study by Eberhart and Seban [3] the 
centerline current density of a moderately 
intense arc in argon is a function of the total 
currentI,havingamaximumofabout 6OOAcm-’ 
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and decreasing for higher values of I. If we set significant factor. To cite an example of practical 
jX equal to this value, then for a titanium plate importance, ohmic heating can be an important 
of thickness d* in the range considered for air- source of thermal energy when a lightning 
craft wings (0.1-0.2 cm) the numerator of (39) discharge interacts with materials of high elec- 
is approximately 0~01402 V. In this particular trical resistivity in certain airplane components. 
instance, T2/Ts* is of the order of 0401, which Contribution No. 679 from the Department of 
indicates that the effect of Joule heating is small Oceanography, University of Washington. 
relative to the external heating due to electron 
flow. In making the foregoing estimate, we have 
not evaluated convective heating which is 
expected to dominate the total heat input for 
currents in the kiloampere range. 
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TEMPERATURES TRANSITOIRES DANS UNE PLAQUE A PARTIR DUNE 
DISTRIBUTION GAUSSIENNE DE FLUX THERMIQUE NORMAL ET DE COURANT 

AVEC APPLICATION A LA DECHARGE LIBRE D’UN ARC 

R&urn&La distribution de densite de courant a l’interieur d’une plaque metallique est determinee pour 
une distribution gaussienne de densite de courant s’ecoulant normalement vers une surface. On a resolu a 
partir dune approche simple du courant interne resultant, l’equation de chaleur pour l’accroissement de 
temperature par effet Joule dans la plaque. On obtient aussi une relation pour l’augmentation de tem- 
perature due a la distribution gaussienne du flux thermique en surface. Puisque l’evidence experimentale 
suggere que la distribution de Gauss est une bonne approximation pour la composante normale de la 
densite de courant de d&charge d’un arc a une plaque anode, les resultats sont appliques a un arc d’argon 
vers une plaque de titane. L’evaluation des parametres pour l’arc d’argon utilisant le modele thdorique de 
Schoeck et d’Eberhart et Seban ainsi que les calculs a partir de la solution montrent que le chauffage par 
effet Joule dans la plaque cst negligeable par rapport a l’tchauffement de la surface par la d&charge de l’arc. 
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INSTATIONARBS TEMPERATURFELD IN EINER PLATTE BE1 WARMESTROMDICHTE 
UND ELEKTRISCHER STROMDICHTE NACH EINER GAUSS-VERTEILUNG. 

ANWENDUNG AUF DIE LICHTBOGENENTLADUNG. 

Zusammenfassung-Die Verteilung der elektrischen Stromdichte in einer Metallplatte wird fur den Fall 
bestimmt, dass die normal zu einer Oberfllche aufgepragte Stromdichte einer Gauss-Verteilung folgt. 
Mit einer einfachen Approximation fur die sich im Innern einstellende Stromdichte wird die “Warme- 
leitungsgleichung zur Bestimmung des Temperaturanstiegs infolge Joulescher Aufheizung der Platte 
gel&t. Ebenso wird eine Beziehung fur den Temperaturanstieg infolge eines nach einer Gauss-Verteilung 
aufgepragten Oberflachenwihmeflusses abgeleitet. 

Da Experimente erkennen lassen, dass die Gauss-Verteiiung eine gute Naherung fur den Verlauf der 
Normalkomponente der elektrischen Stromdichte in einer Platte darstellt. wenn diese bei einer Licht- 
bogenentladung als Anode dient, werden die Ergebnisse auf den Fall eines auf eine Titanplatte treffenden 
Argonlichtbogens angewendet. Die Parameter ftir den Argonlichtbogen wurden mit Hilfe des theoretischen 
Modells von Schoeck bzw. von Eberhart und Seban bestimmt und damit die gefundenen Losungen 
ausgewertet. Es zeigt sich, dass die Joule’sche Aufheizung einer Platte infolge einer Lichtbogenentladung 
gegentiber der vom Lichtbogen an die Oberflache tibertragenen Warmeenergie vernachlassigt werden kann. 

TEMIIEP~ZTYPHOE IIOJIE 13 HJIACTHHE HPII I’AYCCOBOM 
I’ACIIPE~EJIEHHH HOPMAJIbHOFO TEFL?IOBOI’O FIOTOKA 11 

I-IJOTHOCTI4 TOHA R CI3OSO~HOM ~YIVBOM PA:3PFI,‘IE 

hIHOTt3l(MSI--l~~ll lYlj’C~OBOM paCIlpe~eJIf?HI4ll HO~‘Ma~IbIlOii IiOMIlOHC’HTLl II;IOTIIOCTLI TOICB II:1 

OZHOZi I73 IlOFIepXHOf-Teii Mf’TaJIJIWieCHOli nJIaCTllHL1 IlO.rt?_W’HO ~‘“CI~~‘e,le:Ie~Ilif’ KIOTtIOCTI1 

TOKa UH?‘Tp” Het!. 

MCIIOJIb:F/H IlpOcT’jIO ~llll~“‘I’CL’“a~IlIO ;1;1H ISbIpaiKeHHH fJTHOCIITeJlLHOI’O I”‘:19nbTMI)Y”4eI’O 

TorEa, pemaeTm ypasIreIIrie TennonpoBo~aocTI-r, no3IsoJIfnon~ee 0npeae:rIiTb yne:IwIeaIre 

TeMnepaTypbI R IIJIaCThiHe Rkl C’IeT HarpPea ~xtO)‘.XBbIM TelUIOM nOJI\iYeHO COOTHOIIIeHlIe XTIR 

I’aC’IeTa I7OBbIUIeHI4H TeMIIe~,:ITy~,bI nc.ne~cTnne pacnpe~eneann rennonoro nOTOIE:I IIa 

nosepxIrocTrz no rayccotlowy 3aKoHy. nOf’I<OJIblij’ DIicnepI4MeHT rIoKa:x-I, WO raJCCfJH0 

pacnpe~enennc fln~nercn aoponu~t? annpom2iurannefi :2anncnMocTii nopManbaoii IiOMIIO- 

HeHTI.1 TI.XOTHOCTII TOIia OT Jj’rOBOrO [>a:‘pHxa Ha IIdIaCTIIHe, IlCIIOJIb3~eMO2i R IiaYeCTBe nHoXa, 

pe:l~JIbT~TbI IICIIOJIb30ISaHbI AJIH aprOHOBOii ;QWl Ha TRTRIIOBOti IIXBCTIIHe. Ol$eHIfa Ilapa- 

MeTpoe aprorIoI3oti ,qvw no TeopeTwIecI<oil Mo~enn IIIoeIia-NepxapTa II CeAaHa, a TaKHie 

IIO;I)Y’HI1bIe Ha OCHOBe pelIIeIIHH ~‘“C’IPTLI IIOIFa3bIRaIOT, VT0 HarpeB IIjIaCTHHLI ,IWOyneBbIM 

renJt0r.i npenefipeHinm0 Ma.9 no cpaunennro c narpeno~t IroRepxrIocTI4 0T AyroBoro pa3pwa. 


