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Abstract—The current density distribution inside of a metal plate is found for a Gaussian distribution of
current density flowing normally into one surface. With a simple approximation to the resulting internal
current, the heat equation is solved for the temperature increase due to Joule heating in the plate. A relation
for the temperature increase due to a Gaussian distribution of surface heat flux is also derived. Since
experimental evidence suggests that the Gaussian distribution is a good approximation for the normal
component of current density from an arc discharge onto a plate as anode, the results are applied to the
argon arc onto a titanium plate. Evaluation of the parameters for the argon arc using the theoretical model
of Schoeck and of Eberhart and Seban and calculations from the solution indicate that Joule heating in a
plate from an arc discharge is negligible in comparison with surface heating from the arc discharge.
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NOMENCLATURE

azimuthal component of magnetic
induction;

specific heat of the plate material;
plate thickness;

exponential integral, see [1];
maximum total arc current;

current density vector;

current density on plate at center of
arc;

r and z components of current density;
thermal conductivity of plate
material;

thermal conductivity of gas;

Bessel transform variable;
Boltzmann’s constant;

maximum heat flux through plate
surface;

thermal flux vector;
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dimensionless heat flux through the
plate surface;

radius of Gaussian distribution,
exp (—r*?/r§?);

Laplace transform variable;

time variation of current density;
time [s];

initial plate temperature;

reference  temperature for Joule
heating (j¥d*)?/k*a*;

reference temperature for surface
heating, Q*d*/k*;

dimensionless temperature increment
from surface heating, (T* — T¥*)/T*;
dimensionless temperature increment
from Joule heating, (T* — T*)/T%;
dimensionless radius of Gaussian
distribution, r¥/d*; ;

co-ordinate normal to plate surface;
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B, = K*/Kns

?, = (Bs + k*)*:

&4, €2, cConstants chosen for approximation
of Jrand J: respectively:

K*, thermal diffusivity, k*/p*c*;

Kk magnetic diffusivity, 1/u*c*:

i, magnetic permeability of plate
material;

P, density of plate material;

Oos density of gas in arc:

o, work function of the plate material;

¥i(z), =& (/3 - 2%

¥az), = (2e,/3)1 — 2.

Superscript and subscripts
*, denotes dimensional quantities:
F, denotes order v Bessel transform of F;
F, denotes Laplace transform of F.

1. INTRODUCTION

LABORATORY measurements of input current
density (see for example Eberhart and Seban
[3]) suggest that the normal component of
current density into a plate anode may be
described fairly closely by a Gaussian distribu-
tion. In this work, the current density inside an
infinite plate resulting from such a normal
surface distribution of current density is
obtained. With this current as the internal heat
source inside the plate, the heat equation for the
rise in temperature in the plate is solved. A
formula is also derived for the temperature
increase in the plate from a Gaussian distribution
of normal heat flux onto one surface when the
opposite surface is insulated. These solutions
make it possible to describe the temperature
distribution in a plate used as an anode for a
laboratory high pressure argon arc by following
the theoretical model of Schoeck [ 5] or Eberhart
and Seban [3].

2. STATEMENT OF THE PROBLEM
A flat plate of uniform mass density p*,
thermal conductivity k*, specific heat ¢*, and
initial temperature T} is oriented perpendicu-
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larly to the center line of a free, axially symmetric
electric discharge.t The plate is bounded by
planes at z* = 0 and z* = d* (the latter being
the arc-plate interface) i1 a cylindrical co-
ordinate system whose positive z*-axis coincides
with the center line of the arc. The thermal and
electrical conductivities of the plate material,
k* and o%, respectively, are constant and in-
dependent of temperature. Beginning at £* == 0,
the arc discharge gives rise to a current density
j¥ and a thermal flux -~ QF at the arc-plate
interface z* = d*. The opposite side of the
plate, z* = 0, is thermally insulated.

Laboratory measurements of input current
density (see e.g. Eberhart and Seban [3])
suggest that the normal component of j ¥ on the
surface of a plate electrode may be adequately
described by a Gaussian distribution of width
r¥, or by a superposition of Gaussian functions
of different widths. Let I denote the maximum
total arc current. The energy flux into the plate
is the sum of contributions g% from several
different heating processes. The current density
and thermal flux at z* = d* may then be
conveniently represented as

J¥ = (I¥/nrE) S(t*) exp (—r*2/r¥) &,
and
gFr =Y gt =) Qrqir* 1) 2,

where QF is the maximum value of the thermal
flux due to the jth process, £ is the unit vector
normal to the plate, and ¢; is nondimensional.
The temporal modulation of the input current
is given by the function S, which is positive
(negative) when the plate is an anode (cathode).

Since the thermal rather than the electrical
response is of primary interest, it is appropriate
to nondimensionalize the independent variables
by measuring distance in units of 4* time in
units of d*?/k*, where x* = k*/p*c* is the
thermal diffusivity, and current density in units
of j* = I%/nr¥®. For a study of Joule heating in

+ Dimensional and nondimensional variables are writtcn
with and without asterisks, respectively.
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the plate, it is convenient to measure temperature
in units of T¥ = (j*d*)?/k*c*, and electric and
magnetic induction fields in units of j§/¢* and
wisd*, respectively, where y* is the magnetic
permeability of the plate material.

In a free, high-current discharge several
complex mechanisms are involved in the transfer
of heat energy from the arc to the plate. Detailed
discussions of electrode phenomena are found in
[2-5], but only a brief description will be
included here. The magnitude of net thermal
flux g* associated with arc current flow onto a
plate anode may be expressed as

@F=q+qi+apt+a+a—q. )

where g¥ and g¢* are the radiative fluxes from
the plate and arc, respectively. The quantity g*
is the rate of energy transfer to a unit area of the
plate due to electron conduction and is given by

qz = 5*kyT7/2e

where T¥ is the electron temperature and k, is
Boltzmann’s constant. The quantity j* is the
normal component of surface current density
and e is the electron charge. The energy flux g*
in equation (1) represents the heating increment
associated with the electron passing through the
anode drop V,, or

ar =Jj*V,

Energy is also absorbed at the plate surface by
the neutralization of the electrons as they enter
the metal lattice, or

45 =J*¢
where ¢ is the work function of the metal
Inside the arc the gas is highly conducting
and a jet stream is produced by Lorentz forces
directed toward-the anode plate. Near the plate
in the vicinity of the arc centerline the flow is
similar to stagnation point flow, and according

to Schoeck [5], the convection heating is
described by

gt = XT3 — T%)

where T is the arc temperature at the edge of
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the boundary layer and T} is the wall tempera-
ture. From Sibulkin [8] the stagnation point
heat transfer coefficient h* is related to the
Nusselt number Nu by

Nu = h*r*/k¥ = 0763 r*Pro* (B/v}*

where k7 is the thermal conductivity of the gas,
Pr the Prandtl number, § the velocity gradient,
and v the kinematic viscosity. The gas para-
meters are evaluated at the film temperature
which is half way between the wall and jet
temperature at the edge of the boundary layer.
Since the jet is produced almost exclusively by
Lorentz forces, its characteristic speed as found
by Maecker [9] is
U, = (u*/po)¥j*rs

where r§ is the radius associated with the
Gaussian distribution of the normal current
density and p, is the gas density. If U,/2r} is
substituted for the velocity gradient and h* is

evaluated, then the convective heat transfer to
the plate is

g = KX(0-763) Pro (u*/dv2po)t j*2.

If we assume that j* varies spatially as the
normal surface current density the variation of
g* for the Gaussian distribution

J* = j§ exp (—r**/r§?)
takes the form
qF = QX exp (—r*?/2rt?).

The radius corresponding to the 1/e value of
the convective heat minimum is 1-414 times the
radius of the current density distribution, a not
unrealistic assumption (cf Schoeck [5]).

We find it convenient to measure the tempera-
ture increase due to the jth heat flux term in
units of T% = Q¥d*/K*. When melting or
evaporation of the plate material can be
neglected, the total temperature change in the
plate can be written as

T* — T* =Y T*U,; + TV 2)
j
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where U; and V are the solutions of the external
surface heat flux and internal Joule heat source
problems, respectively. The complete boundary
value problems for U and V are as follows:

02U jor* + OU fror + 0*U ;/0z* — oU ot
=0,0<r<ow,l<z<1 (3)
oU {r, 1,1)/0z = q{r. 1), oU {r, 0, )/0z
=Ufr,z0)=0 4)
for the contributions from surface heating and
0V /0r* + oV /ror + 02V /0z* — dV /ot = —j. ],
O<r<o,0<z<l (5)
ovi(r,0,t)/0z = dV(r, 1, t)/cz
= V(r,z,0) =0 (6)

for internal Joule heating in the plate.

3. SOLUTION OF THE SURFACE HEATING
PROBLEM

To solve the differential equation (3) we apply
the Laplace transform in time and Bessel
transform of zero order in the radial variable r
to obtain an ordinary differential equation in z.
The Laplace transform of f(r, z, t) is denoted by
f(r, z, 5) while the Bessel transform of order v is
written as f(k, z, t); i.e.

Fuk,z.s) = [dtexp(—st) | drrd (kn)f(r. 2, 1)
0 [4)

With the introduction of this notation the
transformed differential equation becomes

82U Jor? — (K* + U, =0 (7)
and the solution satisfying the appropriate
transformed boundary conditions is seen to be
U, = gk, s) cosh (J(k> + s)z//(k> + 3)

x sinh /(k* + s).

Performing the inversion with respect to t and
expressing the inverse Bessel transform as an

F. EDWARD EHLERS and DONALD F. WINTER

integral yield
t s

Ufr,z,t) = [ du | dkkJ(kr)exp (—k?t)
0 0

x gk, t — u)0,(2/2, exp (—n’u))

where the Theta function follows the definition
of Abramovitz and Stegun [1] or

0,4(z/2, exp (—n*w))

=1+2 Z (— 1) exp (— n*n*u) cos (nnz).
n=1

This result may be expressed in more usable
form by means of the Macauley-Owen theorem
relating two functions f; and f, to their Bessel
transforms, namely

§ dkk f, (k) (k) = zdroromro)fz(ro).

With the aid of the integral formula from Watson
([6], p. 395)

]; dkk exp (—k2u)J o(kr)J ofkro)

= exp (—(r* + r2)/4u)i(rr, 2u)2u

we finally obtain
, du ( ;
bj(ra 2, t) = ‘[ 5{;\[ drOquj(r()! t— u)
b 0

x exp [ —(r* + rd)/4u] I (rro/2u)
X 04(2/2, exp (—n*u)).

When g; is given by a step function in time
and a Gaussian distribution in the radial
direction exp (—r?/w?), the integration with
respect to r can be performed using the integral
formula in Magnus, Oberhettinger and Soni
({7), p- 93). The solution of the jth term of the
internal heating problem takcs the form

Ufr,z,t) = w* [ duexp (—*/(w? + 4u))
0

x 04(2/2, exp (—*w))/(w? + 4u). (8)
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4. DERIVATION OF THE CURRENT DENSITY

It is advantageous first to derive the azimuth
component of the magnetic field, B(r,z,1),
induced by the current flow in the plate. Then,
if displacement currents are neglected, the
current density in the plate can be calculated
from
J. =~ 5 (B). )
Maxwell’s equations and Ohm’s Law lead to an
equation for B in which the only parameter is
the ratio f = x*/x¥, where &¥ = 1/u*c* is the
magnetic diffusivity:

d/1 0 9°B B
5ﬁﬁﬂmﬂ+a?”ﬁa—a
O<re«o0,0<z<l; {10)
1 drB) J0atz=0 (1)
r or  |St)exp(—r¥/wHatz =1

and

B(r, z,0) = 0.
The boundary condition at z =1 is the non-
dimensional equivalent of (1).

To solve (10), we apply the Laplace trans-
formation and write

B(r,z,s) = | dkkJ, (kr) Byk, 25 (12)
O

The double transform B, will then satisfy the
same differential equation as (7). To_find the
equivalent boundary condition for B, as we
note that

exp (—r?/w?) = W?/2) | dkkJ, (kr)
0

x exp(—w?k¥/4)  (13)

from Watson ([6], p. 393). Substitution of (12)
and (13) and combining the integrands yield for
the boundary condition

B, (k,0,5) = SEIw? exp (— k*w?/4)/2k.

1351

The solution of (7) which satisfies this boundary
condition is
B,(k, z, 5) = SGYXw*/2k) exp (— w2k?/4)
x [sinh(yz)/sinh (y)],  (14)
where
y = (Bs + K*)*. (15)

The parameter B is less than 1072 even for
most metals, including good electrical con-
ductors such as copper and aluminium. Through-
out the sequel, § is limited to values sufficiently
small that only the thermal response for large
t/f is of importance. We first find the inverse
Laplace transform of B(k, z, s) by evaluating the
residues at

92 = Bs + k* = —n?n%

Thus we obtain
Br,z,t) = w* 5 (= 1y~ ! nn sin (nmz) | dk J(kr)
1 4]

x exp (—w?k?/4) F (k, t; B),
where

t/
Fykt: )= | dus(t — u)
0

xexp [—(k? + n*n¥u].  (16)

When the current modulation S(f) is a slowly
varying function over time intervals of width 8,
then

F(k,t; B) = S@)Kk* + n*n®)™' + O(f). (17)

With (17) substituted into the integrand of (16),
the series can be summed to yield

¢ w2 ?
B(r,z,1) = S(t)—z— J dk J, (kr)
0
x exp (—w?k?/4) [S;?:h(sz))] (18)

When this expression is substituted into (6), the
result is simply the quasi-stationary current
density. From the physical point of view, small
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values of f imply that plate currents can adjust
to changes in input current much more rapidly
than the temperature field can accommodate to
corresponding changes in Joule heating.

When most of the input current flows through
an area whose radius is larger than the thickness
of the plate, ie. when w is large, a simple
approximation can be developed for the quadra-
ture in {11). The source term j .j is then such
that the thermal problem stated in (5) has an
analytic solution.

5. SOLUTION OF THE JOULE HEATING
PROBLEM

For large w, the exponential in the integrand
of (11) falls very rapidly to small values as k
increases from zero. Since z does not exceed
unity, the bracketed factor is a relatively slowly
varying function of k about k =0, and this
suggests an expansion in a Maclaurin series:

sinh (kz)/sinh (k) = z — (k*/6)z(1 — z°)
+ (k*z/12)(7/30 — 2%/3 + z*/10)
L 0%, (19)

With P = w?/4, the resulting integrals in (18)
take a form which can be integrated by using
equation (2), p. 393 and p. 100 of Watson [6].
We obtain

{ dk J,(kr) exp (— Pk*)k*"
0 B (__ l)n o
Ty 8P

Using (19) and (20) in (18) leads ultimately to the
following expansions for the current density
components:

j, = — SO{w?*2r)[1 — exp (—r*/w?)]
— (rjw-X1/3 — z*)exp (—r?/w?)
+ O(r/w*)}
Jo = S@tf{zexp (—r2/WI)[1 — (2/3w?)
x (1 — 221 — r¥w?) + O(1/wh)}.

[1 —exp(—r?4P).  (20)

(21)
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Only the first terms of (21) need be retained
when w is large compared with unity. When w
is not large a useful approximation fo the
current density can be constructed from (21) by
multiplying the second terms in each component
by suitably chosen constants ¢, and z,. Thus,
(for t > 0) we write for a step function increase
in current

Go= — W2n[1 — exp(—r*/w?)]
+ &,(r/wH(1/3 — ) exp (—r?/wh)

and {22)

J. = zexp (—r /w1 — £,(2/3w?)
x (1 —z3(1 — r2w?)].

There is no unique procedure for assigning
values to ¢ and ¢, In the present work, the
constants are chosen to give good approxima-
tions to the exact components in the neighbor-
hood of the axis of symmetry where most of the
resistive heating occurs. Thus, the parameter ¢,
is such that the approximate value of j, from (22)
is equal to the exact value at r = § and z = 0.
Similarly, the value of ¢, is chosen to be such that
the approximation to j, is equal to the exact
value computed from (18) and (19) at r = O for

w=t/2
£ xoct calculation.

------ First approximation
______ Second approximation
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F1G. 1. Variation of radial current density with axial distance
at several radial stations for the case w = 4.
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the midpoint z = 4. When chosen in this fashion,
the constants depend upon the parameter w. By
way of example, for the case w = 4, the corre-
spondences are achieved with ¢, = 0-370 and
&, = 0293,

In Figs. 1 and 2, the first approximation to j,
and J, (¢; = ¢, = 0) and the second approxima-
tion from (22) are compared with exact

calculations from (18) and (9) for the case w = 3.

w=1/2
Exact calculation
——.—— First approximation
——-----Second approximation

o

/il
o
©

Q
a
T
\

T

04}t ay r T

Axial current density,
N\,

02 e

| : 1 . . e " |
o] 02 04 06 08 o] 0-2 04 06 08 10
Axial distance , 274"

2. Variation of axial current density with axial distance
at several radial stations for the case w = 1.

FIG.

Similar calculations are shown in Fig. 3 for
r =04 for the case w = 1. More generally,
Table 1 displays appropriate values of ¢, and ¢,
corresponding to several different values of w.
To solve (5) we need to construct the scalar

Table 1. Values of &, and ¢, corresponding to several
values of plate thickness w

w & &y
0-5 0-370 0293
1-0 0-583 0-590
2:0 0-825 0-838
30 0-910 0-918
40 0-947 0-952
50 0-965

1353

product j .j from (22). This product is pro-
portional to the rate of ohmic heating and for
convenience will be denoted by H(z, r):

..owt
Hzn=j.Jj =33 [1 — 2exp(—r?/w?)

+ exp(—2r*/w?)] + 2% exp (—2r/w?)
— Y exp(—r*/w?) + [§,w? — 2z%,
+ z2Y3/w?] exp (—2r/w?)w?

+ [Yi + 22%, — 22593 /w?]r?

x exp(—2r¢/whw* + (223 /wyrt

exp (—2r¥/wiiw®  (23)
-0 w =
—Exact calculation
= --—First approximation
3\3 0-8F =---Second approximation /|
v
/ /
zoer gy
g ay
] r=04 7 ,/’
t 0.4} -/ Y
s R
5 7P
[ ./ ,/
_ / y
o
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o
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1 | 1 | J
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FIG. 3. Varijation of axial and radial current density com-
ponents with axial distance at r = 0-4 for the case w = 1.
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where we have introduced the functions
Yi(2) = &,(1/3 —~ %) (24)
Y,(z) = 2e5(1 — 2%)/3. (25)
The term in 1/r? is not in a form convenient for

applying the Bessel transform. This can be
easily overcome by noting that

(1/r)[1 — exp(—ir})] = fdn exp (—r?n). (26)
4}

H(z,7) is then expressed as polynomials in r?
times negative exponentials in r? and its Bessel
transform is easily obtained by using the formula
on p. 393 of Watson [6] which for our purposes
is written

J dr Jo(kr) exp (— Pr¥r?"*!
0

an
op"
With the substitution of (23) and (26) into (5),

application of the double transform to the
resulting differential equation then yields

a2V,

0z>
subject to

OVy(s, k,0)/0z = 6150(5, k,1)/oz =0, (29)

= (=17, [2P) " exp(~k*/4P)].  (27)

— 5+ k) Ve = — Hyz, ks (29

where
1/w? 2/w2

oz, k)= w4 [| -3

0

exp (—k*/4n)

x dn/n] + (w*z*/4)exp (—w?k?/8)

— (W,/2) exp (—w?k?/4) + (1/4)

x (W2, — 222, + 223 /w?) exp (—w?k?/8)
b (L83 + 2229, — 22292 w1 — wik?/8)
x exp (—w?k?/8) + (1/8)z2¢2(1 — w?k?*/4

+ w*k*/128) exp (— w2k?/8)/w?. (30)

The solution of (28) which satisfies the boundary
conditions in (29) is
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Vo = s~* TdnHy(n)[cosh un cosh u
0

1

x (I = z)/usinh u] + s~ [ dnf,(n)
x [cosh pz cosh (1 — n)/u sinh i)

where

o= (s + k%)% (31)

It is convenient first to invert 5172 with respect to
time and then to perform the Bessel inversion
of oV,,/ct. Thus.

1 X
aVpjet = [dnHom)exp (—k*n 1 + 23
o] 1

X €OS 7z COS hmy exp ( —n2n?t)]. (32)

The integrals which result from the substitution
of (30) into (32) have the form of Fourier
coefficients:

1
a, = A, { dn[w*y(n)cos nan]: iy = 1.7,
0

=2 forn >0,

and similarly,

b, = :{ dy cos nmn[y3(n)]

= 4, j) dy cos nan[2n*y,(n)]

d, = 4, :f) dn cos nan[(n*/w?) ¥3(n)]

1
e, = A, | dn cos nmnn*. (33)
0

In terms of these coefficients, (32) takes the form

1/w2 2/w?

oVy/ot = (w?/4)[ g -1 Oj exp (—k?

X (¢t + 1an)dnn] + 3 exp(—nnD)

n=10

cosh mz{w?e, exp (—k*(t + w?/8))/4
— (a,/2) exp[ —k*(t + w?/4)]
+ (a, — ¢, + d,) exp(—k*(t + w?/8))/4
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+ (b, + ¢, — 2d,)(1 — w2k?/8)
x exp(—k(t + w?/8))/8 + d,(1 — w?k?/4
+ w*k?*/128) exp (— k*(t + w?/8))/8}. (34)

The Bessel inversion can be accomplished by
using (27) with k and r interchanged. After
collecting the coefficients of k* and k*, the
integrations over k are readily performed; the
final result for ¥ can be written as a quadrature:

t 1/w2 2/w?
el T
4} 0 0

y ar? da
xp 4au + 1) 4au + 1

w0
+ ¥ exp(—n*n*u)cos nnz

n=0

x [w?e, exp (—2r%/1,)/1,

— a,exp(—r*/t))/t; + (24, + b, — ¢, + d,)
x exp (—2r/t,)2t, — w(b, + c,)

x exp (—2r¥/t,)(1 — 2r?/z,)/212

+ w*d,(1 — 4r¥/z, + 2rt/12)

x exp ( —2r2/fz)/21'3]} (35)

where
— w2
T, = w* + 4du

7, = w? + 8u.

The first approximation of V for large w, in
which terms in the current density to the order
of 1/w? and higher are neglected, is found from
equation (35) by setting¢; =¢, =0 or

a,=b,=c,=d,=0.

The integrals inside the curly brackets in (35)
can be expressed in terms of exponential integrals

by introducing a new variable of integration
defined by
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¢ = r*/4u(dau + 1) = r*/4u — ar®*/(4au + 1).
(36)

Evaluating the coefficients e, yields for the first
approximation for V

1

w4 r2W2
V= | dud 2| 2Ei( ¥
J ”{1614[ ’<4u(4u+w2)>

0

_ r*w? s ]
— Ei <4—-—————u(8u n w2> —_ El(r /4u)
x exp (—r?/du) + w? exp (—2r%/t))

a

x [1/3+4 Y cosnnz

n=1
X exp(—nzn"u)/nzn’]/tz} +0(1/w?) (37

where Ei(x) is the notation for the exponential
function used by Abramovitz and Stegun [1].
When r is set equal to zero, (37) is indeterminate
but from (35) we see that both integrations of the
square bracketed terms can be performed in
closed form. The remaining integrals can be
expressed in terms of the exponential integrals
for which rational approximations exist.

6. RESULTS AND CONCLUSIONS

The results derived in the preceding sections
were used to calculate the temporal variation
of temperature at r =z =0 due to ohmic
heating of the plate. This is the point on the
insulated surface where the temperature rise is
greatest. In Fig. 4 the nondimensional first and
second approximations of the temperature
enhancement are shown as a function of time
for the step function in the current and for several
values of w. It can be seen from the figure that
the first approximation to V yields an overesti-
mate of the Joule heating effect over the time
interval considered.

It is possible to compare the temperature
increase due to Joule heating with that due to
external thermal energy transferred from the
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FiG. 4. First and second approximations to the transient
temperature at r = z = 0 due to Joule heating.

discharge. All the surface sources of heat des-
cribed in Section 2 except convection and radi-
ation are approximately proportional to the
normal component of current density. Thus, the
dimensionless temperature increase from a
Gaussian distribution of surface heat influx as
given in (8) applies with the same values of w
as in the corresponding ohmic internal heating
solution (37). Figure 5 shows graphs of the
dimensionless temperature increase at the hot-
test point on the insulated surface as functions
of time for several values of w. Comparison of
Vand U in Figs. 4 and 5 for the same values of w
shows that U generally exceeds V at comparable
times by a factor between 1-5 and 3. However, the
true comparative value of U is obtained by
considering the ratio of temperature units for
internal Joule heating and for surface heating,
ie. T§/T¥. From Section 2, a consideration of
the surface heating processes associated with
the flow of electrons gives the nondimensional
temperature T* as

¥ = Qidr/k* = jE(5ky T3 2e + ¢ + V)

x (d*/k*). (38)

A measure of the relative magnitude of Joule
heating as compared with heating due to the
electron flux at the surface is then given by
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FiG. 5. Transient temperature rise at r == z = 0 due to
external energy flux from arc discharge.
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The assignment of accurate parameter values
in (39) is not a straightforward task. The proper-
ties of argon arcs have been determined more
precisely than those of arcs in other gases, such
as nitrogen or air, and for that reason we shall
use parameter values appropriate to moderately
intense argon arcs in a numerical example. Thus,
the electron temperature T.* will be taken as
80 per cent of the gas temperature, the latter
being in the neighbourhood of 12000°K (cf.
Schoeck [5]) for moderately intense currents.
The work function ¢ and the electrical resistivity
1/6* of the plate depend, of course, on the metal
of which it is composed. We use here the values
¢ =4V and 1/6* = 1:6 x 10™* chm-cm, appro-
priate to titanium. (This choice was motivated
by an interest in electrode effects associated with
lightning strikes to aircraft with titanium skin.)
Then, with an anode drop of the order of 1-2 V
(Eberhart and Seban [3]), the denominator of
(39) is of the order of 7 V. According to the
laboratory study by Eberhart and Seban [3] the
centerline current density of a moderately
intense arc in argon is a function of the total
current I, havingamaximumofabout 600 Acm™ 2
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and decreasing for higher values of I. If we set
j¥ equal to this value, then for a titanium plate
of thickness d* in the range considered for air-
craft wings (0-1-0-2 cm) the numerator of (39)
is approximately 0-01-0-02 V. In this particular
instance, Tg¥/T* is of the order of 0-001, which
indicates that the effect of Joule heating is small
relative to the external heating due to electron
flow. In making the foregoing estimate, we have
not evaluated convective heating which is
expected to dominate the total heat input for
currents in the kiloampere range.

The foregoing arguments also support the
assertion that Joule heating of the anode plate
of most laboratory arcs constitutes a relatively
small fraction of the total thermal energy input
to the plate. However, under some circumstances,
the effect of ohmic heating may be of importance
and the analysis set forth in Section 5 provides a
quantitative description of the effect in such
cases. By way of example, in the case of labora-
tory arcs, the influence of Joule heating will be
enhanced if the current density near the center
of the arc is increased by “jetting” of metal
vapor, or if the plate thickness is increased,
or if the plate material is of lower conductivity.
Nevertheless, Joule heating of laboratory elec-
trode plates will not become important unless
these factors combine to increase Tg¥/T* by
two or three orders of magnitude. In different
contexts, however, Joule heating can be a
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significant factor. To cite an example of practical
importance, ohmic heating can be an important
source of thermal energy when a lightning
discharge interacts with materials of high elec-
trical resistivity in certain airplane components.
Contribution No. 679 from the Department of
Oceanography, University of Washington.
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TEMPERATURES TRANSITOIRES DANS UNE PLAQUE A PARTIR D'UNE
DISTRIBUTION GAUSSIENNE DE FLUX THERMIQUE NORMAL ET DE COURANT
AVEC APPLICATION A LA DECHARGE LIBRE D'UN ARC

Résumé—La distribution de densité de courant & I'intérieur d’une plaque métallique est déterminée pour
une distribution gaussienne de densité de courant s’écoulant normalement vers une surface. On a résolu &
partir d’une approche simple du courant interne résultant, '’équation de chaleur pour I’accroissement de
température par effet Joule dans la plague. On obtient aussi une relation pour I’augmentation de tem-
pérature due a la distribution gaussienne du flux thermique en surface. Puisque I’évidence expérimentale
suggere que la distribution de Gauss est une bonne approximation pour la composante normale de la
densité de courant de décharge d’un arc & une plaque anode, les résultats sont appliqués 4 un arc d’argon
vers une plaque de titane. L’évaluation des paramétres pour I'arc d’argon utilisant le modéle théorique de
Schoeck et d’Eberhart et Seban ainsi que les calculs & partir de la solution montrent que le chauffage par
effet Joule dans la plaque est négligeable par rapport 4 I'échauffement de la surface par la décharge de I'arc.
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INSTATIONARES TEMPERATURFELD IN EINER PLATTE BEI WARMESTROMDICHTE
UND ELEKTRISCHER STROMDICHTE NACH EINER GAUSS-VERTEILUNG.
ANWENDUNG AUF DIE LICHTBOGENENTLADUNG.

Zusammenfassung—Dic Verteilung der elektrischen Stromdichte in einer Metallplatte wird fiir den Fall
bestimmt, dass die normal zu einer Oberfliche aufgepriigte Stromdichte einer Gauss-Verteilung folgt.
Mit einer einfachen Approximation fiir die sich im Innern einstellende Stromdichte wird die *“Wirme-
leitungsgleichung zur Bestimmung des Temperaturanstiegs infolge Joulescher Aufheizung der Platte
gelost. Ebenso wird eine Beziehung fiir den Temperaturanstieg infolge eines nach einer Gauss-Verteilung
aufgeprigten Oberflichenwirmeflusses abgeleitet.

Da Experimente erkennen lassen, dass die Gauss-Verteilung eine gute Niherung fiir den Verlauf der
Normalkomponente der elektrischen Stromdichte in einer Platte darstellt, wenn diese bei einer Licht-
bogenentladung als Anode dient, werden die Ergebnisse auf den Fall eines auf eine Titanplatte treffenden
Argonlichtbogens angewendet. Die Parameter fiir den Argonlichtbogen wurden mit Hilfe des theoretischen
Modells von Schoeck bzw. von Eberhart und Seban bestimmt und damit die gefundenen Lésungen
ausgewertet. Es zeigt sich, dass die Joule’sche Aufheizung einer Platte infolge einer Lichtbogenentladung
gegeniiber der vom Lichtbogen an die Oberfliche iibertragenen Wirmeenergie vernachlissigt werden kann.

TEMIEPATYVPHOE IIOJIE B TIJIACTUHE ITPU IF'AYCCOBOM
PACITPEJJEJEHNN HOPMAJIBHOTO TEIIJIOBOT'O IMMOTOKA U
INJOTHOCTN TOKA B CBOBOJHOM AYVIOBOM PA3PAJE

Annoraua—IIpu rayccoBOM pacnpe;lesieHMN HOPMANBHON KOMIIOHEHTHL 1IOTHOCTH TOKA Ha
OAHON M3 [OBEPXHOCTENl MeTAJIMYECKOH TNUIACTHHBL [0JVYeHO pacupelesleHne TIOTHOCTYU
TOKA BHYTPH Heé.

Henorbaya mpocTyio alnpoKCUM Ao JJ1A BEIPAKeHMH OTHOCHTENLHOI0 De3yIbTUPYIOIIeTo
TOK4, pellaeTcd ypaBHeHHe TeTJONPOBOJHOCTH, I03BOJAIOIEE ONpefeTiuTh yheuYeHne
TEMIIePATY P B IIJIACTUHE 33 CYET HATDEBA IMKOYIeBBIM TeruloM. IToydeHo cooTHOIIEHNe 1A
pacdeTa NOBBILIEHUS TEMIIEPDATYpPHl BCJIEICTBHE pACHpejleleHdA TelyioBOro HOTOKa HAa
MOBEPXHOCTH MO TAYCCOBOMY BAaKOHY. IIOCKONBKY 9LCIMEPHMEHT TIOKanaj, 4TO TayCcoBo
pacripeJesleHne SBXAETCA XOpPOliril ANNPOKCHUMALMel BaBHCHMOCTH HOPMAJABHON KOMIIO-
HEeHTHI TUIOTHOCTH TOKA OT AYTOBOTO Paspria Ha IJIACTHHe, HeMONb3yeMoil B KadecTse aHoia,
pesyJibTaThl MCIONL30BAHLL JJIA AprOHOBON JAYyrnm Ha THTaHOBOW miactTuHe. Onenxa napa-
MeTPOB apTOHOBOl Ayru mno reoperndeckoil mogemn Illoexa-OGepxapra u Cebada, a Tammke
HOJIYYeHHEBE HA OCHOBE DELIeHUs pacdeTol NOKA3LIBAIT, YTO HATPEB TIACTHHBI JHOY IEBHIM
TeIJIOM TpPeHe6Pe:KUMO MaJl 110 CPABHEHUI ¢ HATPEBROM IIOBEPXHOCTH OT JyTOBOI0 paspsia.



